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Abstract

Three explicit multigrid methods, Ni's method,
Jameson's finite-volume method, and a finite-
difference method based on Brandt's work, are
described and compared for two model problems. All
three methods use an explicit multistage Runge-
Kutta scheme on the fine grid, and this scheme is
also described. Convergence histories for inviscid
flow over a bump in a channel for the fine-grid
scheme alone show that convergence rate is propor-
tional to Courant number and that impliicit residual
smoothing can significantly accelerate the scheme.
Ni's method was siightly slower than the
implicitly-smoothed scheme alone. Brandt's and
Jameson's methods are shown to be equivalent in
form but differ in their node versus cell-centered
implementations. They are about 8.5 times faster
than Ni's method in terms of CPU time. Results for
an oblique shock/boundary layer intcracticn problem
verify the accuracy of the finite-difference code.
A1l methods slowed considerably on the stretched
viscous grid but Brandt's method was still 2.1
times faster than Ni's method.

Introduction

Three explicit multigrid methods now being
used for solution of the Euler equations and occa-
sionally for the Navier-Stokes equations are dis-
cussed in this paper. The first method was
developed by Ni in 19811 to accelerate the con-
vergence of his own fine-grid Euler scheme. Sub-
sequent work by Johnson and Chima2,5 generalized
the method to other finite-difference fine-grid
schemes and to viscous flows for practical turbo-
machinery problems. A variation of Ni's method has
also been used by Hall for inviscid flows over air-
foils.6 A second method was developed by Jameson
and Baker in 19837 to accelerate the convergence
of the finite-volume multi-stage Runge-Kutta
schemes developed by Jameson, Schmidt, and
Turkel.B This method has been used very suc-
cessfully for inviscid two-dimensional flows over
airfoils and three-dimensional flows over aircraft
configurations,9 and for two-dimensional viscous
flows.10

*Also, Institute for Computer Applications in
Science and Engineering, Langley Research Center,
Hampton, Virginia 23665.

**Work funded under Space Act Agreement
C99066-G; presently at Berea College, Berea,
Kentucky 40403.

Multigrid methods were first developed for
elliptic probiems and have been analyzed in detail
by Brandt.11 For the third method considered
here Chima and Schaffer used Brandt's approach to
develop a finite-difference multigrid Euler and
Navier-Stokes code. Many of Jameson's ideas were
used on the fine grid so that a direct comparison
could be made between the basic Runge-Kutta scheme,
the multigrid scheme, and Ni's scheme. In par-
allel, Turkel has revised Jameson's finite-volume
multigrid Euler codes (FLO52MG and FLO53MG)
allowing comparisons with this method as well.

The intent of this paper is to develop and
compare the Ni, Jameson, and Brandt types of mul-
tigrid schemes. A1l of these schemes use the
Runge-Kutta method as the basic algorithm. There-
fore we will discuss the Runge-Kutta method, its
associated boundary conditions and artificial vis-
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volume forms. We will also discuss other con-
vergence acceleration techniques including spa-
tially-varying time steps and residual smoothing.
Details of the three muitigrid methods will then be
presented. Finally results for several inviscid
and viscous flows will be used to demonstrate the
relative effectiveness of the schemes and to point
out areas where further work is needed.

Governing Equations

The two-dimensional unsteady thin-layer
Navier-Stokes equations may be written in fully
conservative form for an arbitrary coordinate sys-
tem as follows:

. - -
3,q = -J[aEE + an(F - Re S) - D} (1)
= R, the residual
where
P pU PV
U - pul + £ p - puV ¢ n p
q = D E - J-1 XL F J—1 X
pV vU + pvv +
P Eyp nyp
e (e + pu (e + p)V
(2)

1,2 2
e =p [CVT + E(u + v )] 1is the total energy per
unit volume.




p=(y-1) [9 - % p(u2 + v2)] is the static

pressure and D is an artificial dissipation term
to be described later.

The viscous flux term S is given by:
~ o =

C
]a"u + Cza“v

Czanu + C3anv
- -1
S=J (3)
e 1, 2 2
G2, [P- ORR, )]
C 3 u
+ (C]u + 2v) n
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In Egs. (1) to (3) J s the transformation
Jacobian:
3-¢ . 1 1
= n— n = =
- 1
X'y y X xEyrl xnyE (cell volume)
(4)
The contravariant velocity components U and V
along the t- and n-grid lines are given by:
U= Egu + EyVs Vo= nyu + nyv (5)

Spatial Differencing

Two approaches are used to construct difference
formulas on general curvilinear grids. 1In the
finite-difference approach new independent variables
€, n are chosen so that ¥ = £(x,y), n = n(x,y)
maps the original domain to a rectangle and each cur-
vilinear coordinate to a straight line. The equa-
tions are then transformed to (%, n) coordinates
and differenced based on even spacing AE = an = 1.
In the finite-volume approach the equations are
rewritten in integral form and the divergence theo-
rem is used to express the fluxes in terms of sur-
face (or line) integrals. These integrals are then
approximated by some integration formula.

Using central differences these two approaches
give rise to identical formulas for interior cells
even for the full Navier-Stokes equations, see e.g.,
Ref. 12. Though it is not imperative, finite dif-
ference schemes usually locate the variables at the
nodes while finite volume schemes usually locate
the variables at the center of the cell where they
represent a cell-averaged quantity. The differences
between cell-centered and node-centered schemes are
mainly noticed at boundaries and in the transfer of
quantities between coarse and fine grids. These
differences will be discussed later.

For stability and shock capturing both schemes
require an artificial viscosity term which will be
discussed. Also both schemes use a local time step
and implicit residual smoothing to accelerate con-
vergence at the expense of losing time accuracy.

In addition the finite-volume code uses enthalpy
damping.8

Boundary Conditions - Finite-Difference Code

For subsonic flow, inlet values of
and v are specified. The upstream-running Riemann
invariant R- = u-2c¢/(y-1) is extrapolated from
the interior and isentropic relations are used to
compute the necessary flow quantities. For super-
sonic flow all inflow quantities are specified.

Pos Too

For subsonic flow, exit static pressure is
specified and p, u, and v are extrapolated from
the interior. For supersonic flow all outflow
quantities are extrapolated.

On the walls tangency is enforced for inviscid
flow by extrapolating U and setting V = 0. For
viscous flows u = v = 0. Density is extrapolated
to the walls. Surface pressures are computed using
the normal momentum equation:

(n§ +n % )p_+ (n2 + nZ)D =
XX y’y''g Y 'n

X - el ("xu

+n

Y
(6)

where U =0 on the surface for viscous flows.

In the finite-difference code, boundary con-
ditions are applied after all stages of the Runge-
Kutta scheme have been completed.

Boundary Conditions - Finite Volume Code

For external flows the incoming Riemann
invariant R* = u + 2c/(y-1), the entropy, and the
tangential velocity are specified upstream. The
outgoing Riemann invariant R- = u - 2c/(y-1) 1is
extrapolated. At a subsonic outflow the situation
is reversed with the first three guantities
extrapolated and R- specified. The downstream
total energy is evaluated assuming a constant total
enthalpy.

For internal flows the total enthalpy, the
entropy, and the tangential velocity are specified
at the inlet and R~ 1is extrapolated. At the
exit the static pressure is specified and the
entropy, the tangential velocity, and R* are
extrapolated.

Variables are not defined directly on solid
surfaces where only the normal fluxes are needed
Since V =0 on solid surfaces it follows that F
depends only on p at the surface (Eq. 2). The
pressure is calculated from the normal momentum
Eq. (6). In practice a fictitious cell is placed
inside the body. In this cell the pressure is found
from Eq. (6), the density and normal velocity are
set symmetric with external values, and the tan-
gential velocity is set antisymmetric. For viscous
flows simple extrapolation of the pressure is suf-
ficient and both velocity components are set anti-
symmetric.



Artificial Dissipation - Finite-Difference Code

Dissipative terms consisting of fourth and
second differences are added to prevent odd-even
point decoupling and to allow shock capturing
respectively., The dissipative term D 1in Eg. (1)
is given by:

Dg = (Dg + Dn)q (n

In the finite-difference code the dissipative

operators are non-conservative. The g-direction
operator is given by:
DEq = C (Voagy - VaQgggy) (8)
where
"i “ e 2, 2
C=—J—'y-= yE+XE=S§ (9

is the arc length along the grid in the direction of

the dissipation. The terms V, and V, are
given by:
Vo = ugMAX (4 415 ¥4 3, v47,3)
Vg = MAX (0, wgq - V) (10)
where
-2 + .
R LTS IS s I L 15 | an
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and
up = 0(1)
- o 12
Mp = (]6) (12)

Switching functions used in £q. (10) increase
Vo slightly and switch off V4 at shocks,
effectively eliminating overshoots ahead of shocks.

In smooth regions of the flow the dissipative
terms are of third order and thus do not detract
from the formal second-order accuracy of the
scheme. Near shocks vy j 1is large and the
second-difference dﬁssipa%ion becomes locally of
first order.

Artificial Dissipation - Finite-Volume Code

The artificial viscosity terms in the finite-
volume code are similar to those in the finite-
difference code. The dissipative term D is
evaluated in conservation form using

In recent versions of the code the fourth dif-
ference term is computed as the second difference
of CV4qgg rather than as given above. V, and Vy

are given by (10,11) as before with typical values
of the constants being:
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Now C 1s given by the sum of the spectral

radii of the Jacobians of E and F. Define
A = ég and B = 9;
aq aq
then
2 2
- Ul v C YE v ]
p(A) = Y.
J Jatx
2 2
- V] + C n. +n 1
p(B) = Y.
J JAty
N ° 1
C = p(A) + p(B) = Jpy (15)
An aiternative is to use C = p(R) in the
g-direction and C = p(B) in the n-direction.
In this case the metric quantities in C represent

a length scale normal to the direction of the dis-
sipation, which is exactly opposite to that used in
the finite-difference code Eq. (9).

Multi-Stage Runge-Kutta Schemes

An explicit Runge-Kutta scheme is used to
advance the Euler or thin-layer Navier-Stokes equa-
tions in time from an initial guess to a steady
state. Given the residual R from a finite-
difference or finite-volume representation of the
flow equations, a k-stage scheme can be written as

q(0) = qn

a(?) = q(0) - 4y at Rq(0)

q(k) = q(o) - ag A Rq(k-])

g+l < q(k) (16)
A k-stage scheme used with central differencing
of the inviscid equations can be made stable for a
Courant number up to A* = k-1, depending on the
choice of a3. The values of a3 and A* used
here are given in Table 1. For consistency we must
have oy = 1. For nonlinear problems the schemes
are second-order accurate in time if ag_y1 = 1/2.
Schemes of the form of £Eq. (16) cannot be more than
second-order accurate for any values ag.

For efficiency both the physical and artificial
dissipation terms are calculated once based on gq(0),
then held constant for the remaining stages. For a
five-stage scheme these terms are usually reevalu-
ated after the first stage. 1In either case the
multi-stage schemes have the desirable property
that if the solution converges, i.e., Rq{0) = 0,
then q(i) = q(o) and gn+l = gqn, independent of the
time step.

Spatially-vVariable Time Step

Both the finite-difference and finite-volume
codes use a spatially-variable time step to
accelerate convergence. In the finite-difference
code the time step is given by:



A

At =

1,3 an

2 2

dxlul + dylvl + € ydx“ + dy

1.C.
where

dx = gyl + Inygl: dy = [gy] + Inyl

This is calculated based on the initial con-
ditions and is stored and not updated during the
solution.

In the finite-volume code the two-dimensional
time step is given by a conservative estimate as:

1 1

+ (18)
Ati,j m:xﬁ'j Atyi,j
where
Atx = A
2 2
Ul + ¢ Ye, + ¥
A
Aty = (19)
2 2
Vi + C Yn v ny

Multi-Staqe Runge-Kutta Results

A model probiem of inviscid, transonic flow
over a 10 percent thick circular-arc bump in a
channel was used to investigate the effects of num-
ber of stages and Courant number on convergence
rate. The grid for this problem has 129 by 33
points and is shown at the top of Fig. 1. The
inlet Mach number 0.675 is the one-dimensional
choking Mach number for this case. Mach contours
at the bottom of Fig. 1 show that although a super-
sonic bubble and shock do develop, the two-
dimensional flow does not choke.

Convergence histories for the finite-difference
scheme without multigrid in Fig. 2 show the log of
the RMS residual in density versus iteration for two
to five-stage schemes. Each scheme was run near its
maximum Courant number. As expected, convergence
rate improves with Courant number. The two-stage
scheme required 29.6 sec of cpu time on the Cray
X-MP 2/4 at NASA Lewis Research Center, and the
number of iterations reached in that time is marked
on the other curves. The higher-level schemes are
more efficient since they obtain higher Courant
numbers per number of stages while requiring fewer
evaluations of the artificial dissipation.

If the convergence criterion js taken as a
three decade drop in the residuals, only the five-
stage results are fully converged at 2000
iterations. The four-stage results, however, are
converged to plotting accuracy.

Implicit Residual Smoothing

Residual smoothing was introduced by Lerat (see
for example Ref. 13) for use with the Lax-Wendroff
scheme and was later applied to Runge-Kutta schemes
by Jameson.14 The technique involves replacing
the residual calculated from Eq. (1) with a value
smoothed by an implicit filter, e.q.,

(1 -« JR = R (20)

EGEE)(] " b

where § and &
operators and g

are standard second-difference
and ey are smoothing parameters.

Residual smoothing increases the support of the
finite-difference scheme and thereby increases the
stability range of the time-stepping scheme. Linear
analysis has shown that the Runge-Kutta scheme with
implicit smoothing may be made unconditionaily sta-
bte if ¢ is sufficiently large. 1In one dimension

2
1 A
€ >Z[(;\T> - ]} (21)
gives unconditional stability where A* s the
Courant number of the unsmoothed scheme and A 1is a

larger operating Courant number. 1In two dimensions
¢ may be reduced substantially and different values
may be used in each direction. Turkell5 has shown
that since large values of ¢ can decrease the
convergence rate of the scheme, the best strategy

is not to maximize the Courant number but simply to
increase the Courant number of the unsmoothed scheme
by a factor of two to three.

Implicit residual smoothing requires solution
of a scalar tridiagonal equation for each variable
in each direction, and adds 10 to 15 percent to the
total CPU time for a solution on a Cray X-MP. In
the finite-volume code it is applied after each
Runge-Kutta stage. 1In the finite-difference code
it s applied after every-other stage with somewhat
larger values of «¢.

Figure 3 shows the effects of implicit smooth-
ing on convergence rate of the five-stage scheme
for the problem of fig. 1. The top curve is for
the unsmoothed scheme at a Courant number of three
and is duplicated from Fig. 2. This scheme con-
verges with a spectral radius of about 0.997. The
middie curve is for a Courant number of six with
smoothing after each stage. It converges about
twice as fast as the unsmoothed scheme with a spec-
tral radius of 0.994. The bottom curve for a Cour-
ant number of nine shows a spectral radius of
0.991. Again the convergence rate improves with
Courant number but the amount of improvement
decreases as the Courant number becomes large.

Circles on the curves can be used to compare
convergence level at a given CPU time to that of
the two-stage scheme shown in Fig. 2.

Multigrid Methods

Muitigrid algorithms were originally developed
for elliptic problems. Brandtll has described
some of the earlier versions of these algorithms.
This approach supposes that one has an iteration
procedure which quickly reduces the high frequency
error but then slows down in reducing the low fre-
quency error. One applies the basic iteration pro-
cedure a few times to remove the high frequency
component of the error. The remaining error is then
fed to a coarser grid which can represent the error
since it no longer contains high frequencies that
would be aliased. On this coarser grid the basic
smoothing algorithm is again used and the process
is repeated.




Ni's Method

Ni's method is basically a one-step Lax-
Fredrichs scheme applied to the residual on a
coarse grid. Ni used it to accelerate his own
fine-grid Euler scheme.l Johnson adapted it to
MacCormack's fine-grid scheme2 and to viscous
flows by demonstrating that viscous terms may be
neglected on the coarse grids. Johnson also sim-
plified Ni's scheme considerably by replacing the
flux Jacobian terms with temporal differences of
the fluxes.3 This "flux-based" coarse-grid
scheme is outlined below.

Given a fine-grid solution ¢
change

and a fine-grid

aghtl = gnt1 _ gn
a coarse-grid change can be estimated using a
Taylor series:

AqM*2 = aqM*] 4+ at(AqMtT)y + 0(At2)

The Euler equations are used to replace the third
term

~

n+l :
(&g ), = -At(Eg + F“)t

and the order of differentiation is reversed

n+l - - ‘n+l “n “n+l “n
(ag )y = —At(EtE *Fe)) o= - [(E -t )E + (F -F )n]

giving finally

ag"? - ag™! - At[(AE)E v (AF)n] (22)
where
- “n+l n
aE = E100 C €, etc.

Equation (22) 1s implemented on a coarse grid with

spacing 2hAt and 2hAn and time step hat, h
=1, 2, 4, 8 ... using:
n+2 18T - -
AqQ = 7 4laq - At (AE + AF)]
b3 an 4{L 1 i+h,3+h
+ |AqQ - At1 (aE - AF)]
L »3 i+h,j-h

+ |aq - At1 j(»AE + AF%

L i-h,j+h
r . . n+1
+ fq - Ati’j(—AE - AF)] b j»h}h
(23)

The fine-grid Runge-Kutta scheme is used to
advance the solution one time step, giving gqn+]
and Aq"*1  at each grid point. Choosing a vaiue
of h determines a coarser grid, and Eq. (23) is
then used to determine aAgh+Z at those coarse-grid
points. On the boundaries aqn*! s taken to be
zero. 01d values of aqh+! may be overwritten so
that no additional coarse-grid storage is needed.
values of aq"*2 at intermediate fine-grid points

are then filled in by bilinear interpolation and the
fine grid is updated using gh+2 = gh+l + aqN+2. This
leaves us back on the fine grid with new values of

q and Aq, and the process can be repeated for any
other coarse grid. 1In practice, the grids are
advanced from fine to coarse with one iteration on
each.

Since the right-hand side of Eq. (23) depends
strictly on fine-grid changes, if the fine-grid
converges the coarse-grid scheme given by (23) can-
not change the solution. Thus, the delta form of
Ni-type schemes retains fine-grid accuracy. For the
same reason, all physical viscous dissipation terms
may be neglected on the coarse-grids without
affecting a viscous solution on the fine grid.

Equation (23) may be interpreted as a Lax-
Fredrichs scheme because of the averaging of Aq
and of the fluxes. This averaqging stabilizes the
coarse-grid scheme without the use of artificial
viscosity. The scheme is stable to a Courant number
of one, which restricts the fine-grid scheme to a
Courant number of one. Thus Ni's scheme is attrac-
tive for accelerating explicit MacCormack-type
schemes but is l1imited to a two-stage Runge-Kutta
scheme. 1In the next section we discuss a possible
multistage Ni-type scheme.

Finally, Eq. (22) shows that the coarse-grid
change AQN*2 will be of the order of the fine-
grid change AqP*T plus a small correction of
order at. Thus each coarse-grid step gives effec-
tively one fine grid at but with fewer opera-
tions. This is demonstrated in Fig. 4 where con-
vergence rates for the transonic model problem are
compared for different numbers of grids. The fine-
grid scheme (1 grid) is a two-stage Runge-Kutta

_____ Convergence
rates for two, three, and four grids are nearly
identical to the convergence rates for Courant num-
bers of two, three, and four shown in Fig. 2, but
require less CPU time. The four-grid curve in
Fig. 4 is about the best that we have done with
Ni's scheme, but it is not as fast or easy to pro-
gram as the five-stage scheme with implicit
residual smoothing shown in Fig. 3.

Multistage Ni Scheme

The major drawback of Ni-type schemes is that
the Lax-fredrichs coarse-grid scheme has a Courant
1imit of one. Hence, there is no major gain in
using a muitistage Runge-Kutta method on the fine
grid with a large Courant number when this cannot
be maintained on coarser grids. An alternative is
to use a multistage Runge-Kutta algorithm on all
grids. This necessitates rewriting the Runge-Kutta
scheme so that only Aq appears. Consider the
equation

A typical stage of a Runge-Kutta scheme is

(k+1) (k+1) n At (k) (k)
qu = 4y Ty T %.y 2ax [F(Qj”) - F(Qj_])]
(24)
We wish to rewrite the right-hand side of (24) so
that only Aq appears. Note that

() om0

n (k)
9 =9 i .

n
- Qj) =QJ "’AQJ



Using a Taylor series expansion for F(q? + Aq(k)

we find that an alternative to Eq. (24) is

)

(k+1) At . n n

83T = ey yq gax LFUGy,) - Flay )
e Fray,aads) - Falaalfly
or
a At

(k1) %k, () %k D0 o (k)

qu = G.] AQJ + 2AX [F (qj"‘]).qu"]
- P paad . es)

Here only Aq's appear, as in Ni's original scheme.
Furthermore, for a linear problem we have the stan-
dard Runge-Kutta scheme and so the stability con-
ditions are unchanged.

The multistage coarse-grid scheme given by
Eq. (25) is thus proposed as an alternative to
Ni-type schemes that would permit larger Courant
numbers on the coarse grids.

Full Approximation Storage (FAS) Multigrid Method

Brandt's FAS multigrid has been developed as a
general strategy for accelerating iterative schemes
and may be applied directly to the multi-stage
schemes. It results in a coarse-grid equation that
has the same form as the fine-grid equation with
the addition of a forcing function. The multistage
scheme may thus be used directly on the coarser
grids, with successively larger time steps on suc-
cessively coarser grids. This is the primary
advantage of Brandt's or Jameson's methods over
Ni's method. Here we develop FAS multigrid using
Brandt's notation, then show the relationship to
Jameson’s method.

Brandt's notation.!} Consider a general
steady nonlinear equation on a grid with spacing
parameter h.

Rpap = fh (26)
where the forcing function f may be zero.
Consider an approximate solution 4qh, evaluate

Rhdp and subtract it from each side of

Eq. (26) to get the residual equation.

Rhdn - Rydh = i - Rpdp

This may be approximated on a coarser
using

2h grid

2h

= Roply 4y

2h ]
Rondzn = Ropl L (Fp - Rpay) (27

where 12h means interpolation from the h-grid to
the 2h-grid. The unsteady terms may be added to
Eq. (27) to give:

) + R .q

= f 28
2h t 2h"2h 2h (28)

where

2h

2h
fon = Roplp 9y * 1y

(Fn - Rpap)

Equation (28) may now be solved on the 2h-grid
using the Runge-Kutta scheme:

h i-
a'on = Gy - oy ot <R2hqgh V- fgg)> (29)

and the corrections may be interpolated back to
the h-grid using:

h 2h
h < 9 * Ipp <q2h - I qh) (30)
On more than two grids, Eqs. (29) and (30) may
be applied recursively.

It can be shown that Egs. (29) and (30) are the
2h-grid approximation to linearizing Eq. (26) around
the current solution qpn, solving Eq. (26) for

the error €on = o - aéh' and then updating

~ ~ h
the current solution by ah € ap * IZheZh' This

approximation is reasonable only if the error epp
is smooth and therefore visible on the 2h-grid.
Thus, it is desirable to choose the parameters of
the Runge-Kutta scheme to insure smoothing of high-
wavenumber errors.,

If the fine grid converges,
Eq. (28) becomes

frn - Rpap = 0 and

0

2h 2h
h%n?

+ 1

)+ R = Ronln O * 1

(q (f
2h t

2h%2n

or
2h
(q2h)t = 0 since Uy = Ih qap,

so that the coarse-grid scheme maintains fine-grid
accuracy. Like Ni's scheme, this is true even if
the coarse-grid residual Ry, 1is different from
the fine-grid residual Ry, so that on the coarse
grids a simple first-order artificial viscosity may
be used and the physical viscosity may be neglected
altogether.

Jameson's notationd. Jameson starts with a
general unsteady equation written in finite-volume
form:

%; (Vq) + Rq = 0; V = volume (31)

and defines a coarse-grid forcing function as the
difference between the coarse-grid residual and the
sum of the fine-grid residuals:

(o) (0) (0)
fon = “Zthh * Rondon

On the coarse grids the multistage scheme is
implemented using

(1) (0) (i-1) (0)
Gn = %n - o At (thqzh - fan )

(32)

or




(1-1)

(1) (0) - ay At [RthZh

(0) (o)
azp’ = dap *Zthn - R2hq2h]

(33)

Jameson's coarse-grid scheme Eq. (33) may be com-
pared directly with the one based on Brandt
Eq. (28), which is repeated below for reference.

(3-1)
- oy At [Rondan

s (th£°) - f§0)> - thlﬁhq£°)]

It is evident that the two schemes are equiva-
Tent in form but differ in the interpolation or
grid-transfer operators.

(h) (0)

An = 92p

(28)

Grid-Transfer Operators

Before discussing these operators we note some
differences in coarse-grid data locations between
node-centered (finite-difference or F.D.) and cell-
centered (finite-volume or F.V.) schemes. In
node-centered schemes, coarse-grid nodes coincide
with fine-grid nodes (Fig. 5(a)) so that variables
can be transferred between grids directly without
interpolation. This process is termed "injection.'
In cell-centered schemes, however, coarse-grid
cells are made up of several fine-grid cells, and
the centers of the coarseand fine-grid cells are
not coincident (Fig. 5(b)). Thus, it is always
necessary to use some form of interpolation between
grids with cell-centered schemes. The grid transfer
operators used in the FD and FV codes are listed
below:

For the term Iihqh the
the FD code uses injection and the fV code uses a
volume-weighted average.

Restriction operators.

FD: Qon = ap

V. q
A _h'h
FV: gy =§ : Von

2h for the restriction of the fine-grid residual
Ih (thh - fh), Brandt recommends a weighted-average

over several grid points. Although the fD code
could use injection here we have obtained much
better convergence rates using an unweighted average
over nine neighboring nodes. The FV code uses a
sum over the four fine-grid cells that make up the
coarse-grid cell.

(34)

2h 4
FO: I, (Ra, - f) =3 E (Rpap, - )
9 nodes
2h
Fv: I (Ryay - fp) = (Rpayp - fp)
4 cells
(35)

Prolongation operators. For the expression

h 2h
ap < a9, ¢ IZh(q2h - Ih qh), both codes calculate

ihqh as described above, subtract it

to get the coarse-grid correction, then

transfer the correction to the fine grid using
bilinear interpolation. If more than one
Runge-Kutta sweep is performed on a coarse grid then

2h
L gy

the term 1
from q2h

must be stored or reconstructed.

Thus the main difference between the finite-
difference and finite-volume multigrid schemes fis
the restriction operators which have been chosen
appropriately for each scheme. We suspect that the
differences have minor effects on convergence
rates, but have not quantified those effects.

Coarse-Grid Boundary Conditions

Most of the boundary conditions described ear-
Tier involve extrapolations or one-sided dif-
ferences and do not maintain fine-grid accuracy
when applied directly on coarse grids. It is pos-
sible to define a boundary condition forcing func-
tion similar to Jameson's interior forcing function
Eq. (32), but this increases programming com-
plexity. Instead, coarse-grid boundary conditions
are computed with coarse-grid accuracy, but only
the change in boundary values during the Runge-
Kutta cycle is transferred back to the fine grid,
j.e.,

h (k) (o)

* Lop (¢ = 9onac) (36)

%ec ¢ Ynae

This formulation maintains consistency in that if
the interior scheme converges the coarse-grid scheme
cannot change the fine-grid boundary values.

In the finite-difference code, boundary con-
ditions are updated after every complete Runge-
Kutta cycle. 1In the original version of FLO52MG,
boundary conditions were frozen on coarse grids.

In the present version of FLO52MG, boundary con-
ditions are updated after every stage of the Runge-
Kutta scheme and after every grid transfer.

Programming Considerations

FAS multigrid is usually programmed by storing
all the grids end-to-end in one long, singly-
dimensioned array. This increases the required
storage by about 4/3 in two-dimension or 8/7 in
three-dimension. Brandt typically accesses these
long arrays by indirect addressing which can be
difficult to program and vectorize. Jameson over-
comes these difficulties in FLO52MG by defining
singly-dimensioned arrays in the main program but
working with multiply-dimensioned arrays in the
subroutines which have the array size and starting
location passed through their argument 1ist. This
technique allows existing nonmultigrid subroutines
to be converted to muitigrid with minimal changes.
Nevertheless, FAS multigrid is considerably more
difficult to program than Ni's method.

Full Multigrid

Full multigrid (FMG) combines successive grid
refinement with FAS multigrid. The solution is
started on the coarsest grid and is iterated a few
times using the fine-grid scheme, possibly with FAS
muitigrid as well. The solution is next inter-
polated to the next-finer grid where it provides a
good initial guess, then the process is repeated
until the finest grid is reached and the



solution converges. Experience has shown that it

is wasteful to drive the residual to zero on coarse
FMG grids. We have found that 25 Runge-Kutta cycles
are sufficient, with more iterations used only on
the finest grid.

Multigrid Cycle

In the finite-difference code we use a V or
sawtooth-cycle with one Runge-Kutta iteration on
each grid. A typical cycle is diagrammed in Fig. 6.
Turkel's experience has shown some increase in
efficiency by doing one interation on the h-grid,
two iterations on the 2h-grid, and three iterations
on all coarser grids. More iterations on the
coarsest grid may actually decrease the convergence
rate.

Multiqrid Results

Figure 7 shows FMG convergence rates for the
problem of Fig. 1 using the finite-difference
code. Here 300 iterations were run on each of four
successive grids to show the convergence rate on
each. Normally only 25 iterations would be run on
the first three grids. The coarsest grid (17 by 5)
was run with the four-stage scheme alone and has a
spectral radius of 0.962. The second and third
grids have spectral radii of 0.937, and the finest
grid (129 by 33) converges with a spectral radius
of 0.95.

Figure 8 shows the FMG convergence rate of
Turkel's version of Jameson's finite-volume code
FLO52MG for external flow about an RAE2822 super-
critical airfoil with My = 0.75 and « = 3°.

A C-type grid was used with 160 by 32 points on the
finest grid. Thirty iterations were run on both
the coarse and medium grids, with two and three
grid levels used respectively. Ninety iterations
were run on the finest grid with four grid levels,
giving a spectral radius of about 0.763. This is a
typical convergence rate for this code for inviscid
external flows on uniform grids.

Figure 9 compares convergence rates for Ni's
method, the finite-difference Runge-Kutta scheme
alone, and the finite-difference and finite-volume
Runge-Kutta schemes with FAS multigrid. The Ni
multigrid results were run with four grids at a
Courant number of 0.95, and show a spectral radius
of 0.995. The four-stage Runge-Kutta results were
run with implicit residual smoothing at a Courant
number of 5.2 and show a spectral radius of 0.994.
The finite-difference FAS multigrid results were
run with the same Runge-Kutta parameters as above
but with 25 FMG iterations on each coarse grid and
300 FAS iterations on the finest grid. The spectral
radius of the FAS multigrid scheme is 0.943. The
finite-volume FAS multigrid results were run with a
four-stage scheme at a Courant number of 6.0 and
also with a five-stage scheme at a Courant number of
7.5. These results show spectral radii of 0.855 and
0.822 respectively. The differences in convergence
rate between the finite-difference and finite-
volume codes are probably due to the additional
enthalpy damping step used in the finite-volume
code.

Circles on Fig. 9 show equal CPU times of
16.7 sec on the Cray X-MP. In terms of CPU time
required to reach a certain convergence levei, the
implicitly-smoothed Runge-Kutta scheme alone is
marginally faster than Ni's scheme. The two FAS

multigrid schemes are similar to each other in per-
formance and are approximately 8.5 times faster
than Ni's scheme or the implicitly-smoothed scheme
alone.

Error Smoothing Versus Time-Marching

In the original work on multigrid for elliptic
equations, point Jacobi or Gauss-Seidel iteration
schemes were used because of their ability to smooth
high-frequency errors. The fact that these schemes
could be interpreted as time-marching schemes was
considered irrelevant. 1In contrast Ni's scheme has
been referred to as “hyperbolic multigrid” with its
main purpose being to advance rapidly in time using
coarse-grid information.

It is not clear which interpretation is more
appropriate for analysis of FAS multigrid schemes
applied to hyperbolic problems. Jamesond bases
his analysis on the smoothing properties of the
Runge-Kutta scheme. On the other hand,
Jespersont® has shown that multigrid solutions
possess time-accurate properties. Thus FAS may
work because it allows larger time-steps on the
coarser grids.

Using a stability anaiysis of the linear one-
dimensional convection equation with fourth-
difference artificial dissipation it is possible to
choose the multistage scheme parameters ag, U,

e, and X to maximize the smoothing and the time
step. Jameson has published several sets of these
parameters in Ref. 9. During the current work
Schaffer developed an optimization code that chooses
these parameters to minimize the area under the
amplification factor curve.

Experience with these "optimal parameter
schemes" has been inconclusive. It is clear that
both large Courant numbers and high smoothing lead
to fast convergence. However, schemes with equal
Courant numbers but very different one-dimensional
smoothing properties often have similar convergence
rates. We suspect that the effects of stretched
grids on the artificial viscosity and the effects
of applying implicit residual smoothing as a
sequence of one-dimensional operators are such that
the amplification factor for the two-dimension codes
do not look much like the one-dimensional model
results. Also, Jameson has shown that amplification
factors can vary considerably from grid to gridl7
making it difficult to predict the behavior of the
overall multigrid scheme.

Viscous Results

Experimental data for the interaction of an
oblique shock wave with a laminar boundary layer
have been published by Hakkinen et al.18 This
case has been computed by many researchers, notably
by MacCormack and Baldwinl9 using a 32 by 32 mesh.

Here we have computed this flow with a 113 by
41 mesh. The free-stream Mach number is 2. The
upper boundary was treated as an inviscid wall
which was bent 3.091° to generate an oblique shock
that intersects the lower wail at 0.16 ft at an
angle of 32.585°. The grid has a constant x-spacing
of 0.003 ft and a y-spacing at the wall of
0.0001 ft, stretching geometrically through the
boundary layer to a constant spacing above. At the
wall the grid aspect ratio is 30:1.



Figure 10 shows an Euler solution computed on
the viscous grid. Static pressure contours are
shown at the bottom and the lower-wall pressure
distribution s compared to experimental data at
the top. The inviscid lower wall has no effect on
the flow except to reflect the incident shock. The
computed pressure distribution shows some overshoot
after the reflected shock but a good comparison
with the overall shock strength.

Convergence histories for the Ni, Runge-Kutta,
and FAS muitigrid schemes are shown in Fig. 11. AIll
three schemes show fast initial convergence for this
purely supersonic flow, but all slow down abruptly
after a three-to-four decade drop in the residuals,
presumably because of the very fine grid at the
wall. It appears that the multigrid schemes par-
allel the convergence behavior of the fine-grid
scheme but at a faster rate. The Ni scheme shows a
surprising dip and jump in convergence near the end.
Circles showing convergence levels at equal CPU
times of 22.3 sec indicate that the three schemes
are comparable in speed for this case.

Figure 12 shows the thin-layer Navier-Stokes
solution for this problem. Flow conditions were
chosen to give a Reynolds number of 2.96x105 at
the shock (x = 0.16 ft). Static pressure contours
at the bottom of Fig. 12 show not only the incident
and reflected shocks but a leading edge shock that
reflects from the upper wall and compression waves
generated by the separation bubble. The lower-wall
static pressure distribution is compared to the
experimental data at the center of Fig. 12 and shows
good agreement after the leading-edge and reflected
shocks, but slightly under predicts the plateau
pressure in the separated region. Computed skin
friction shown at the top of Fig. 12 shows very good
agreement with the data, including separation and
reattachment points. WNote that skin friction was
not measured in the reverse fiow region.

Viscous flow convergence rates shown in Fig. 13
are slower than for the Euler case and show the same
tendency to slow down, but not so abruptly. Circles
at equal CPU times of 28 sec show that the Runge-
Kutta scheme with implicit smoothing is slightly
faster than Ni's scheme, but that the FAS multigrid
scheme is about 2.1 times faster.

Conclusion

In this work we have developed and compared the
Ni, Jameson, and Brandt types of multigrid-schemes.
fach scheme uses the Runge-Kutta method as the basic
algorithm and that method has been studied without
multigrid as well.

We have demonstrated that the efficiency of
the Runge-Kutta scheme increases with number of
stages and that convergence rate increases with
Courant number. We have shown that Ni's scheme
gives one fine-grid time step on each coarse grid
but that its Courant limit of one limits the effec-
tiveness of the scheme. We propose a multistage
coarse-grid scheme to improve the Courant limit.
Using implicit residual smoothing to increase the
Courant iimit of the Runge-Kutta scheme without
multigrid gives a scheme slightly more efficient
than Ni's.

We have shown that Jameson's finite-volume
multigrid scheme and a finite-difference scheme
based on Brandt's work are similar in form, but

with differences between interpolation methods for
the cell-centered and node-centered schemes. For
an inviscid transonic model problem the finite-
difference multigrid scheme is about 8.5 times
faster than the best NV or Runge-Kutta scheme with-
out multigrid. Jameson's finite-voliume code is
about three times faster than that in terms of
iterations, probably due to the additional enthalpy
damping step. The two multigrid codes are about
equal in terms of CPU time.

Convergence rates of all methods decrease on
highly-stretched grids. For a shock-boundary layer
interaction problem the finite-difference multigrid
code was sti1) 2.1 times faster thap the best N} or
Runge-Kutta scheme without multigrid. We believe
that significant improvements can still be made in
multigrid convergence rates for viscous flows.
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